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The control of food intake and body weight by the brain relies upon the detection and integration of
signals reflecting energy stores and fluxes, and their interaction with many different inputs related to
food palatability and gastrointestinal handling as well as social, emotional, circadian, habitual and
other situational factors. This review focuses upon the role of hormones secreted by the endocrine
pancreas: hormones, which individually and collectively influence food intake, with an emphasis
upon insulin, glucagon and amylin. Insulin and amylin are co-secreted by B-cells and provide a signal
that reflects both circulating energy in the form of glucose and stored energy in the form of visceral
adipose tissue. Insulin acts directly at the liver to suppress the synthesis and secretion of glucose, and
some plasma insulin is transported into the brain and especially the mediobasal hypothalamus where
it elicits a net catabolic response, particularly reduced food intake and loss of body weight. Amylin
reduces meal size by stimulating neurons in the hindbrain, and there is evidence that amylin
additionally functions as an adiposity signal controlling body weight as well as meal size. Glucagon is
secreted from A-cells and increases glucose secretion from the liver. Glucagon acts in the liver to
reduce meal size, the signal being relayed to the brain via the vagus nerves. To summarize, hormones
of the endocrine pancreas are collectively at the crossroads of many aspects of energy homeostasis.
Glucagon and amylin act in the short term to reduce meal size, and insulin sensitizes the brain to
short-term meal-generated satiety signals; and insulin and perhaps amylin as well act over longer
intervals to modulate the amount of fat maintained and defended by the brain. Hormones of the
endocrine pancreas interact with receptors at many points along the gut–brain axis, from the liver to
the sensory vagus nerve to the hindbrain to the hypothalamus; and their signals are conveyed both
neurally and humorally. Finally, their actions include gastrointestinal and metabolic as well as
behavioural effects.
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1. INTRODUCTION
The normal control of food intake and body weight by

the brain relies upon the detection and integration of

signals reflecting energy stores and fluxes and their

interaction with myriad inputs related to food palat-

ability and gastrointestinal handling as well as social,

emotional, circadian, habitual and other situational

factors. This review focuses upon the role of hormones

secreted by endocrine cells in the islets of Langerhans

in the pancreas, hormones which individually and

collectively influence food intake, with an emphasis

upon insulin, glucagon and amylin.

There are several categories of peripherally arising

signals that influence food intake (Woods et al. 1998;

Schwartz et al. 2000). One category includes the

signals generated during meals that influence satiation
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(i.e. signals that contribute to the perception of fullness

and the termination of an ongoing meal) and satiety (i.e.

signals that function to prolong the interval until hunger

or the onset of the next meal). These acutely acting

signals are collectively called ‘satiety signals’ in this

review, and the prototypical example is cholecystonin

(CCK). Satiety signals are either relayed to the hindbrain

by sensory nerves or else stimulate the hindbrain directly.

A second category includes hormones whose secretion is

proportional to the amount of fat in the body, and it

includes insulin from the pancreatic islets and leptin from

adipose tissue, stomach and elsewhere. These adiposity

signals are transported from the circulation into the

hypothalamus in the forebrain. Satiety signals and

adiposity signals arising from the endocrine pancreas,

as well as their interactions with other controls of food

intake, are the topic of this review. Other peripherally

arising signals include steroid hormones from the gonads

and adrenal cortex, cytokines and nutrients and they are

the topics of other articles in this volume.
q 2006 The Royal Society



1220 S. C. Woods and others Pancreatic signals control
2. OVERVIEW OF THE CONTROLS OVER
FOOD INTAKE
For body weight (body fat, actually) to remain stable
over time, energy intake (food intake) must match
energy expenditure (the sum of excreted energy, heat
loss and physical work). Any deviation from this
equilibrium will result in weight gain or loss. Humans
and most mammals take in energy in discrete episodes
or meals. For most of us, the impetus to begin a meal is
rarely if ever based on a biological deficit or need such
as insufficient glucose or other energy source in some
critical tissue. Rather, the timing of when specific meals
are initiated is based on any of several psychological
factors such as habit, time of day, the social situation,
convenience and others (Woods 1991; Woods &
Strubbe 1994; Strubbe & Woods 2004). Because
meal initiation relies on psychological as opposed to
more purely physiological factors, if body weight is
indeed regulated via a linking of energy intake to energy
expenditure, the regulatory process must logically be
manifest as a control over how many calories are
consumed once a meal begins; i.e. on meal size.
Consistent with this, many signals generated during
meals are proportional to the number of calories
consumed, and some of these secretions function as
satiety signals to the central nervous system to help
limit meal size (see reviews in (Kaplan & Moran 2004;
Moran & Kinzig 2004; Woods 2004; Strader & Woods
2005)). Pancreatic islet hormones in this category
include glucagon and amylin and possibly insulin as well.

In contrast to satiety signals that are secreted mainly
during meals, adiposity signals are tonically active,
providing an ongoing message to the brain proportional
to total body fat. When an individual’s weight changes,
the amount of insulin and leptin secreted into the blood
changes in parallel, and this is reflected as an altered
adiposity signal reaching the brain. As discussed in
detail below in §5a the net effect is a change of the
brain’s sensitivity to satiety signals. For example, when
an individual is food restricted or voluntarily diets
sufficiently to lose weight, the consequent reduction of
leptin and insulin renders brain circuits that control
meal size less sensitive to meal-generated satiety
signals. This means that more calories than normal
must be consumed before a sufficient signal is
generated to stop a meal. This situation persists until
body weight returns to normal. Conversely, if an
individual gains excess weight, the increased insulin
and leptin signal in the brain results in increased
sensitivity to satiety signals. Smaller meals are consumed
until the excess weight is lost.
3. THE ENDOCRINE PANCREAS
The endocrine pancreas comprises of isolated islets
containing endocrine cells that are dispersed within the
exocrine pancreas. In humans, there are around one
million islets, totalling one gram of tissue. Most islets
contain at least three types of cells, A-cells that secrete
glucagon, B-cells that secrete insulin and amylin and
D-cells that secrete somatostatin. Other, distinct, islets
contain mainly F-cells that secrete pancreatic poly-
peptide (PP). Although these individual hormones
have numerous functions, the generalization can be
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made that a major function of the pancreatic islets is the
control of glucose homeostasis. Insulin and glucagon
are perhaps most important in this regard, with insulin
being the primary determinant of glucose removal from
the blood and the suppression of glucose secretion by
the liver. Glucagon on the other hand is a primary
stimulant of glucose production and secretion by the
liver. Amylin is co-secreted with insulin, and its best
known functions are reducing food intake and gastric
emptying, and inhibiting pancreatic glucagon secretion
and pancreatic and gastric enzyme secretion.

Like the other endocrine pancreatic hormones, PP
exerts a variety of regulatory functions, including
modulation of gastric motility, pancreatic exocrine
secretion and eating, and many of these effects appear
to be related to a modulation of cholinergic output.
The primary function of pancreatic somatostatin
(which is also made in the gastrointestinal tract and
hypothalamus) appears to be to provide a local
modulatory influence, mainly inhibition, of the
secretion and/or activity of most metabolic processes,
including the secretion of insulin, amylin and glucagon
(Krantic et al. 2004; Guillemin 2005).
4. SOMATOSTATIN, PANCREATIC POLYPEPTIDE
AND INGESTIVE BEHAVIOUR
Acute administration of somatostatin to animals either
systemically (Lotter et al. 1981; Levine & Morley 1982)
or directly into the brain (Vijayan & McCann 1977;
Lotter et al. 1981) reduces food intake. As is the case
with several other satiety signals, the ability of systemic
somatostatin to reduce food intake requires an intact
vagus nerve (Levine & Morley 1982). Chronic infusion
of somatostatin, on the other hand, is without effect on
food intake, body weight or other parameters (Lins
et al. 1980).

The secretion of PP during meals requires an intact
vagus nerve and plasma PP levels are directly
proportional to the caloric load consumed. Systemic
administration of PP to normal and obese mice reduces
food intake (Malaisse-Lagae et al. 1977; Asakawa et al.
2003) and body weight (Malaisse-Lagae et al. 1977),
and this is thought to be due to stimulation of Y4
receptors in the dorsal vagal complex, including the
area postrema (AP), the nucleus of the solitary tract
(NTS) and the dorsal motor nucleus of the vagus
(DMV) (Whitcomb et al. 1997). PP presumably
modulates gastrointestinal function via the actions of
these receptors on vagovagal reflexes because the NTS
and DMV are the primary sensory nucleus and the site
of vagal lower motor neurons, respectively.

Transgenic mice that over-express PP are hypopha-
gic and lean (Ueno et al. 1999). Their plasma PP levels
are 20-fold higher and increase twice as much in
response to a meal as in normal wild-type mice. The
food intake suppression of PP-overexpressing mice is
accompanied by a decrease in gastric emptying and
both can be counteracted by systemic administration of
PP antibodies. Systemic PP administration also
reduces food intake in humans (Berntson et al. 1993;
Batterham et al. 2003). In contrast to its peripheral
action, when PP is administered directly into the brain,
it increases food intake (Clark et al. 1984; Flynn et al.
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1999) and stimulates rather than inhibits gastric
emptying. It is presently unclear which central Y
receptors mediate the orexigenic action of PP. Inter-
estingly, however, Y4-receptor immunoreactivity is
abundant on orexin neurons in the lateral hypo-
thalamus (Campbell et al. 2003).
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Figure 1. Insulin is secreted into the blood from the pancreas
in direct proportion to the amount of fat stored in white
adipose tissue. As it circulates through brain capillaries, a
small amount of insulin is transported into the brain where it
acts on insulin receptors on neurons with either net catabolic
or anabolic activity, for example in the arcuate nucleus of the
hypothalamus. These neurons in turn influence energy
homeostasis (food intake and energy expenditure) and
ultimately the amount of fat stored in the body by exerting
a net catabolic action.
5. INSULIN AND INGESTIVE BEHAVIOUR
Historically, insulin was considered to act entirely in
the periphery since it is too large a peptide to cross the
blood–brain barrier and since neurons do not require
insulin in order to take up and oxidize glucose for
energy (Seaquist et al. 2003). The best-known action of
insulin is to increase glucose uptake in most peripheral
tissues, consequently lowering the level of glucose in
the blood. Diabetic patients take insulin to reduce their
hyperglycemia, and a not uncommon side effect of this
routine practice is to lower blood glucose to the point of
hypoglycemia. However, because hypoglycemia per se
can elicit hunger and induce eating (MacKay et al.
1940; Lotter & Woods 1977), the best-characterized
behavioural effect of insulin administration is increased
food intake resulting from insufficient glucose reaching
the brain. This is not a direct effect of insulin since
administering glucose along with insulin does not
result in eating (Booth 1968), and since reducing the
ability of the brain to utilize glucose for energy by
administering non-metabolizable glucose analogues
also increases eating (Smith & Epstein 1969; Langhans
1996). The view that the brain per se is insensitive to
insulin was dispelled by the findings that insulin does in
fact enter the brain, that it reacts with specific insulin
receptors on neurons, and that it triggers diverse events
including reducing food intake and body weight (see
reviews in Plum et al. 2005; Porte et al. 2005).

(a) Insulin decreases feeding behaviour

Plasma insulin is low during fasting (basal condition)
and increases mainly during and immediately after
meals (prandial condition) or glucose administration
(stimulated condition). Basal, prandial and stimulated
insulin levels are all direct functions of the amount of
white adipose tissue in the body, leaner individuals
having lower levels and more obese individuals having
higher levels (Bagdade et al. 1967; Woods et al. 1974;
Polonsky et al. 1988). The amount of insulin in the
plasma (along with the amount of leptin in the plasma
since its secretion is also directly proportional to white
fat (Considine et al. 1996)) may therefore convey an
important signal indicating the degree of adiposity to
any insulin-sensitive tissue. Indeed, it is now generally
accepted that some insulin enters the brain from the
circulation, thereby providing a key negative feedback
signal in the regulation of body fat (figure 1). When an
individual loses weight, less insulin is secreted and less
insulin consequently reaches insulin receptors in the
hypothalamus and elsewhere in the brain. Because
insulin in the brain reduces food intake, food intake
consequently increases until body weight (and the
insulin signal) is restored. Conversely, when an
individual overindulges to the point of gaining body
weight, the insulin signal increases, reducing food
intake until the weight is lost. Insulin (like leptin) is
Phil. Trans. R. Soc. B (2006)
therefore an important adiposity signal whose activity is

integrated with diverse other information to determine

food intake; and both hormones fit reasonably well with

the concept of a fat-related lipostatic signal to the brain

as proposed by Kennedy more than a half a century ago

(Kennedy 1953).

When exogenous insulin is administered directly

into the brain, near or directly within the mediobasal

hypothalamus, animals behave as if they have excess fat

in the body; i.e. they reduce their food intake and lose

weight (see reviews in (Schwartz et al. 1992; Woods

et al. 1995; Woods 1996; Woods & Seeley 2001)). The

response is dose-dependent (Woods et al. 1979; Riedy

et al. 1995), has been documented in numerous species

including non-human primates, and is not secondary to

illness or incapacitation (Chavez et al. 1995b). Con-

versely, when insulin antibodies are administered in or

near the mediobasal hypothalamus, animals overeat

and gain weight (Strubbe & Mein 1977; McGowan

et al. 1992). When insulin levels in the brain are held

constant for long intervals by means of slow, steady

local infusions, body weight is maintained and

defended at a level determined by the dose of insulin

administered (Woods et al. 1979; Chavez et al. 1995a).

Although insulin has not been administered directly

into the brains of humans, certain formulations of

insulin have been administered intranasally to humans

with a consequent increase of cerebrospinal fluid but

not plasma insulin (Born et al. 2002). Humans

receiving insulin in this way eat less food and lose

body fat (Hallschmid et al. 2004a,b).

Although there are suggestions that the brain is able

to synthesize insulin (Gerozissis 2004), the bulk of

evidence implies the opposite and it is generally

acknowledged that most if not all insulin influencing

the brain reaches it via the circulation (Schwartz et al.
1994; Woods et al. 2003b; Banks 2004). Insulin enters

the brain via insulin receptor-facilitated transport
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Figure 2. Insulin, glucagon and amylin are all secreted from
the endocrine pancreas, and all participate in the regulation of
energy homeostasis. Insulin acts at both the liver and the
forebrain to reduce energy intake as well as to suppress
hepatic glucose production. Glucagon acts mainly at the liver
where it increases glucose production while generating a
signal to reduce energy intake that is relayed to the hindbrain.
Amylin acts directly at the hindbrain to reduce energy intake.
NTS, nucleus of the solitary tract; AP, area postrema; C
indicates stimulation.
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through capillary endothelial cells (Baura et al. 1993;
Banks et al. 1997). The process is saturable and
selective for insulin. The transport of insulin into the
brain is reduced in fasted animals (Strubbe et al. 1988),
in animals maintained on a high-fat diet (Woods et al.
2004; Gotoh et al. 2003) and in genetic (Stein et al.
1983) and dietary-induced obesity (Israel et al. 1993;
Kaiyala et al. 2000).

Since insulin in the brain ultimately derives from
plasma insulin, it should be the case that experimen-
tally induced increases of plasma insulin enter the brain
and result in reduced food intake and body weight. The
problem, as discussed above, is that experimentally or
therapeutically induced increases of plasma insulin
typically result in hypoglycemia and a consequent
increased tendency to eat. However, when insulin is
administered systemically at very low doses that do not
elicit hypoglycemia, animals do in fact reduce their
food intake (Anika et al. 1980; Vanderweele et al.
1982). Alternatively, when sufficient glucose is admi-
nistered simultaneously with systemic insulin
to circumvent hypoglycemia, animals also eat less
(Nicolaidis & Rowland 1976; Woods et al. 1984). In
these experiments it cannot be determined whether the
insulin is acting in the brain or the periphery to reduce
food intake. For whereas increases of plasma insulin are
manifest within a few minutes in the brain during meals
or following an intravenous insulin infusion (Steffens
et al. 1988; Strubbe et al. 1988), centrally administered
exogenous insulin usually reduces food intake with a
longer latency (Plata-Salaman & Oomura 1986). There
is also evidence that insulin acts in the liver to reduce
food intake (Surina-Baumgartner et al. 1995), perhaps
interacting with glucose (Langhans et al. 2001).
Intrameal hepatic portal infusions of insulin antibodies
increase meal size, implying that the normal prandial
increase in insulinemia is a necessary part of meal
termination (Surina-Baumgartner et al. 1995).
Although these studies did not disclose the site of
origin of the anti-satiating effect of insulin antibodies,
the rapid onset of action coupled with the finding that
subdiaphragmatic vagotomy eliminates the inhibition
of food intake elicited by a low dose of systemic insulin
(Vanderweele 1993) is consistent with an abdominal
site of action of insulin in satiety. Despite the consistent
increase in meal size in response to hepatic portal
insulin antagonism, insulin infusions failed to reduce
meal size consistently under the same conditions
(Surina-Baumgartner et al. 1995). When appropriate
doses of insulin and glucose were administered
together, however, meal size was reliably reduced
(Langhans et al. 2001), consistent with the hypothesis
that the acute satiating effect of systemic insulin
depends on the presence of glucose.

Insulin receptors are expressed in many areas of the
brain (Figlewicz et al. 1985; Corp et al. 1986), with high
concentrations in the mediobasal hypothalamus,
especially the arcuate nucleus (Plum et al. 2005),
which also expresses the most active form of the leptin
receptor (Baskin et al. 1999). This region is thought to
mediate most of insulin’s catabolic action.

Insulin and leptin act in part by increasing the
sensitivity of the brain to meal-generated satiety signals.
As discussed above, these signals, including amylin and
Phil. Trans. R. Soc. B (2006)
glucagon (figure 2) as well as CCK, are secreted during
meals from endocrine cells in both the pancreas and the
gastrointestinal tract (Moran 2004; Woods 2004;

Strader & Woods 2005). Their cumulated message is
integrated within the brain, where it interacts with
many other factors (including the signal provided by
adiposity signals) to terminate the meal and contribute
to the sensation of satiety. When the insulin (Figlewicz
et al. 1986; Riedy et al. 1995) or leptin (Matson et al.
1997; Emond et al. 1999, 2001; Matson & Ritter 1999;
Ladenheim et al. 2005; Morton et al. 2005) signal is
experimentally increased locally within the brain, the
ability of CCK and other satiety signals to reduce meal
size is increased. Likewise, when the adiposity signal is
lowered, the ability of satiety signals to reduce meal size

is decreased (McMinn et al. 2000). Thus, adiposity
signals contribute to the regulation of body weight by
influencing the amount of food eaten during individual
meals. When an individual is underweight, the reduced
adiposity signal allows larger meals to be consumed

until weight is restored and vice versa.
To summarize, increased insulin in the mediobasal

hypothalamus provides a signal that ample or excess
energy is available in the body, and one consequence is a
reduction of the amount of energy subsequently ingested.
Simultaneously, the increased hypothalamic insulin

signal also elicits a vagal reflex to the liver to suppress
the production of glucose (Obici et al. 2002c). Increased
insulin (and probably leptin) is therefore analogous to
other signals indicating a surfeit of energy, such as an
increase of certain lipids (Davis et al. 1981; Obici et al.
2002b) or glucose (Levin et al. 2004) locally within the

hypothalamus; and there is evidence that overlapping
intracellular signalling pathways mediate the overall
catabolic response to these diverse metabolic signals
(Levin et al. 2002; Niswender & Schwartz 2003; Lam
et al. 2005a,c; Porte et al. 2005; Seeley & York 2005).
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(b) Disruptions of central insulin signalling

Individuals with insulin-dependent diabetes mellitus
(IDDM) are hyperphagic. They are not obese because
insulin is required for adipocytes to store fat, such that
the excess calories consumed are wasted via inefficient
utilization as well as via excretion in the urine. When
insulin is administered locally into the brain of animals
lacking insulin, their hyperphagia is attenuated with no
change in other diabetic symptoms (Sipols et al. 1995).
Mice lacking insulin receptors selectively in neurons
(Brüning et al. 2000), and rats with reduced insulin
signalling locally in the hypothalamus (Obici et al.
2002a), have increased food intake and an obese
phenotype. Thus, accurate sensing of insulin by
hypothalamic receptors is necessary for effective
control of food intake, and this is also true of normal
control of hepatic glucose output (Lam et al. 2005b).
Mice lacking insulin receptors are hyperglycemic and
have a short life span (Okamoto & Accili 2003).
Genetic rescue of insulin receptors in the pancreas
and liver ameliorates but does not normalize the
syndrome (Okamoto et al. 2004), and when
the insulin receptor is additionally rescued in the
brain, the mice are normoglycemic (Okamoto et al.
2004). The important point is that insulin signalling in
the hypothalamus is necessary for normal energy
homeostasis.

Analogous to insulin receptors in other tissues,
hypothalamic insulin receptors are linked to an
intracellular signalling cascade utilizing insulin
receptor substrate-phosphatidylinositol 3-OH kinase
(IRS-PI3K), and when these enzymes are stimulated
directly by an insulin mimetic that bypasses the
extracellular portion of the insulin receptor, animals
eat less and lose weight (Air et al. 2002) and have
reduced hepatic glucose production (Obici et al.
2002c). Administering drugs that block the IRS-PI3K
pathway locally in the arcuate nucleus prevents insulin
from exerting its catabolic effect (Niswender et al.
2003). Although most tissues, including many brain
cells, use IRS-1, arcuate neurons and pancreatic B-cells
use IRS-2 (Torsoni et al. 2003). Mice lacking IRS-2
have severe obesity and hyperglycemia, and this can be
reversed by inserting the IRS-2 gene uniquely into the
brain (Burks et al. 2000; Kubota et al. 2004; Lin et al.
2004). The implication from all of these experiments is
that the insulin signalling system in the hypothalamus
controls many aspects of energy homeostasis and that
disruptions of the signalling cascade at any point can
lead to overeating, obesity and glucose dysregulation.

As discussed above, plasma insulin is low during
weight loss or fasting, and the entry of insulin into the
brain is disproportionately decreased even further in
such individuals (Owen et al. 1974; Strubbe et al.
1988). This is adaptive since when available energy is
low, circulating insulin has less access to key receptors
in the hypothalamus thereby allowing larger meals to be
consumed once food becomes available; and when
available energy is high, insulin more readily enters the
brain and limits food intake.

Rats fed a high-fat diet have central insulin
resistance (Arase et al. 1988; Chavez et al. 1996;
Woods et al. 2004; Gotoh et al. 2003), perhaps
contributing to the obesity that often develops. When
Phil. Trans. R. Soc. B (2006)
rats are allowed to select their own mix of macro-
nutrients (protein, carbohydrate and fat), most select a
high-fat blend. When insulin is administered into the
brain of such rats, food intake and body weight are
decreased. However, the intake of dietary carbohydrate
and protein is protected as there is a selective reduction
of dietary fat (Chavez et al. 1996; van Dijk et al. 1997).
This may occur because when insulin is high,
carbohydrate is the preferred source of energy by
most tissues such that maintaining carbohydrate intake
would make teleological sense. Conversely, when
insulin is low, fat is the preferred fuel for most tissues.
Consistent with this, animals deficient in insulin become
hyperphagic on low-fat diets, spilling off the excess
consumed carbohydrate as they obtain enough fat for
utilizable energy, but normophagic when offered a diet
high in fat (Friedman et al. 1983; Chavez et al. 1998).

An important point from this literature is that the
ability of insulin to exert its central catabolic action
interacts with body fat and its metabolism. It also
interacts with the location of fat in the body. Fat
distribution differs between males and females. On
average, men carry more visceral and less subcutaneous
fat, whereas the converse is true of women (Wajchen-
berg 2000). Body fat distribution in turn is related to
the risk for developing the metabolic syndrome, with
visceral obesity having a substantially higher risk than
subcutaneous obesity. Hence, the metabolic co-mor-
bidities of obesity are more frequent in men (Bjorntorp
1997; Wajchenberg et al. 2002). The relative secretion
of leptin and insulin also correlates with fat distri-
bution. Insulin directly correlates with visceral fat and
is therefore a risk factor for the metabolic syndrome,
whereas leptin correlates better with subcutaneous fat
and does not carry the same metabolic risk (Woods
et al. 2003a). Insulin is therefore a more relevant
adiposity signal in males and leptin a more relevant
adiposity signal in females. Consistent with this, the
male brain is relatively more sensitive to the catabolic
action of insulin than the female brain (Clegg et al.
2003; Hallschmid et al. 2004b), whereas the female
brain is relatively more sensitive to leptin (Clegg et al.
2003; Woods et al. 2003a).

(c) Central neural networks influenced by insulin

There are many excellent reviews of the central
pathways influenced by insulin and leptin (Woods
et al. 1998; Elmquist et al. 1999; Ahima et al. 2000;
Schwartz et al. 2000; Cone et al. 2001; Havel 2002;
Porte et al. 2002, 2005; Seeley & Woods 2003; Flier
2004; Schwartz & Porte 2005) and they need not be
reiterated here. The important features are that the
critical receptors are in the mediobasal hypothalamus
and especially the arcuate nucleus, and that parallel
anabolic and catabolic circuits are both tonically active
and both influenced by adiposity as well as many other
signals. The presence of opposing hypothalamic
circuits for controlling energy homeostasis enables
rapid and fine-tuned control over energy homeostasis
since the brain can simultaneously turn up one system
(e.g. catabolic or anabolic) while turning down the
other. Insulin and leptin cause a net reduction of
activity in hypothalamic anabolic circuits and a net
increase of activity in hypothalamic catabolic circuits.
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It is axiomatic that the brain exercises regulatory
control over body fat content, and that this is manifest
at least partly via the control of food intake. It is just as
obvious that the brain influences blood glucose levels as
well, in part via direct control of autonomic nervous
system projections to the pancreatic islets and liver.
Only recently, however, has it become recognized that
the same or closely allied neurons in the hypothalamus
control both food intake and the impact of islet
hormones on hepatic glucose production, and that
the same receptors and signals evidently control both
responses.

As reviewed above, when insulin is administered
near or directly into the arcuate, animals become
hypophagic, and when insulin is low or absent in the
brain, animals become hyperphagic, and this can be
attenuated by local administration of insulin into the
brain (Sipols et al. 1995). Increased insulin in the
arcuate also reduces hepatic glucose production via
the vagus nerve (Obici et al. 2002c; Pocai et al. 2005);
likewise, arcuate administration of oleic acid also
reduces both food intake and hepatic glucose pro-
duction (Obici et al. 2002b; Lam et al. 2005b). Thus,
molecules that signify ample available energy (insulin
or certain fatty acids) initiate a signal to the liver to stop
producing so much glucose while simultaneously
sending a message to eat less food.

Evidence suggests that normal control of hepatic
glucose output relies on an adequate insulin signal both
locally in the liver as well as within the hypothalamus,
and that an adequate fatty acid signal locally within the
hypothalamus is also important. When either signal is
compromised in the brain, animals gain excess weight
and become systemically insulin resistant (Brüning
et al. 2000; Obici et al. 2002c; Okamoto et al. 2004;
Lam et al. 2005b), these being two key symptoms of the
metabolic syndrome. Leptin elicits comparable actions
as insulin in the hypothalamus (Niswender & Schwartz
2003; Munzberg & Myers 2005) although it should be
noted that the way the two adiposity signals innervate
specific arcuate neurons differs (Xu et al. 2005). As
with insulin, leptin in the arcuate reduces food intake
and body weight (Campfield et al. 1995; Seeley et al.
1996), and reduced leptin signalling results in hyper-
phagia and obesity as well as systemic (Coleman 1978;
Zhang et al. 1994) and central (Ikeda et al. 1986)
insulin resistance. Administration of leptin into the
brain reverses insulin-deficiency hyperphagia (Sindelar
et al. 1999) and lessens systemic insulin resistance
(Haluzik et al. 2004). Hence, convergent signals from
insulin and leptin act in the brain to regulate both
energy and glucose homeostasis and a defect in either
leptin or insulin signalling in the brain can result in
overeating, weight gain, insulin resistance and other
sequellae of the metabolic syndrome (Porte et al. 2005;
Schwartz & Porte 2005).

In sum, plasma insulin is a signal that reflects both
circulating energy in the form of glucose and stored
energy in the form of visceral adipose tissue. Insulin
acts directly at the liver to suppress the synthesis and
secretion of glucose, and some plasma insulin is
transported into the brain where it provides an
important and indeed necessary input for the appro-
priate regulation of both stored energy and glucose
Phil. Trans. R. Soc. B (2006)
secretion by the liver. As occurs in the brain, the liver is
also simultaneously influenced by competing signals
with regard to glucose secretion since glucagon both
stimulates insulin secretion and increases hepatic
glucose output.
6. AMYLIN AND INGESTIVE BEHAVIOUR
Islet amyloid polypeptide or amylin, is co-secreted with
insulin from pancreatic B-cells. Whereas with regard to
food intake, insulin functions mainly as an adiposity
signal and glucagon functions mainly as a satiety signal,
amylin has characteristics of both kinds of signal. Like
insulin, plasma amylin levels are low during fasting and
increase during meals and following glucose adminis-
tration, and the levels are all directly proportional to
body fat. Amylin and insulin are normally co-secreted
in a fixed molecular ratio (insulin to amylin) of between
ten and one hundred. Obesity, diabetes mellitus,
pancreatic cancer and certain pharmacological inter-
ventions all tend to increase the amount of amylin
relative to insulin.

(a) Amylin as a satiety signal

Eating results in a rapid increase in plasma amylin that
is directly proportional to meal size (Butler et al. 1990;
Moore & Cooper 1991; Young & Denaro 1998).
Administration of exogenous amylin prior to a meal
dose-dependently reduces food intake in rats and mice
(Chance et al. 1991; Morley & Flood 1991; Lutz et al.
1994, 1995; Morley et al. 1994; Arnelo et al. 1996a),
mainly due to a reduction in meal size (Lutz et al.
1995, 2001b; Reidelberger et al. 2002; Mollet et al.
2004), without producing a conditioned taste aversion
(Chance et al. 1992; Lutz et al. 1995; Morley et al.
1997; Asarian et al. 1998; Rushing et al. 2002). The
effect of exogenous amylin on meal pattern is therefore
similar to that of CCK. As discussed below, plasma
amylin is thought to function as a satiety signal by
accessing receptors in the AP in the hindbrain, a region
with a relatively permeable blood–brain barrier.
Nonetheless, some plasma amylin probably does
enter the brain via facilitated transport through the
blood–brain barrier (Banks et al. 1995), and when
amylin is administered directly into the lateral or
3rd-cerebral ventricle, it elicits a potent and long-
lasting anorectic effect at very low doses (Rushing et al.
2002). Consistent with this, blockade of central amylin
receptors produces a long-lasting increase in food
intake, body weight and body adiposity (Rushing
et al. 2001).

(b) Disruption of amylin signalling

Several amylin antagonists are available (e.g. amylin
8-37, AC 253 and AC 187), and when administered
prior to meals either systemically or directly into the
AP, each attenuates the anorectic action of exogenous
amylin (Lutz et al. 1996, 1997b, 2000; Mollet et al.
2004; Reidelberger et al. 2004) and increases food
intake when administered alone (Grabler & Lutz 2004;
Mollet et al. 2004; Reidelberger et al. 2004). These data
strongly imply a physiological role of endogenous
amylin in the regulation of food intake, specifically in
the regulation of meal size. Consistent with this, mice
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lacking amylin have a significantly increased rate of
body weight gain and slightly increased cumulative
food intake relative to controls (Gebre-Medhin et al.
1997, 1998; Lutz 2005). Little is known of the post-
receptor intracellular signalling mechanisms elicited by
amylin, although its anorectic action has been linked to
the formation of cGMP in the AP (Riediger et al. 2001;
Becskei et al. 2004).

(c) Interactions of amylin with other signals

Amylin and CCK have been reported to interact
synergistically to reduce meal size (Bhavsar et al.
1998). While CCK antagonists do not affect the
anorectic action of amylin, amylin antagonists attenu-
ate CCK’s anorectic action (Morley et al. 1994; Lutz
et al. 1996, 1997a, 2000), and the anorectic effect of
CCK is almost absent in mice lacking amylin (Mollet
et al. 2003). These data have been interpreted to
indicate that endogenous amylin has a neuromodu-
latory function within the AP/NTS region of the
hindbrain that facilitates or amplifies other satiety
signals such as those elicited by CCK that are conveyed
to the NTS via afferent vagal nerves (Ritter &
Ladenheim 1985; Moran et al. 1997; Lutz et al. 1998;
Mollet et al. 2003). This mechanism would therefore
be analogous to that by which the adiposity signals
insulin and leptin act in the hypothalamus to influence
the brain’s sensitivity to meal-generated signals.

Amylin and glucose activate the same neurons in the
AP (Riediger et al. 2002), as do amylin and glucagon-
like peptide-1 (GLP-1) (Riediger et al. 2002). AP
neurons responsive to glucose are also responsive to
CCK (Funahashi & Adachi 1993; Wang et al. 2000).
Perhaps analogous to what occurs in the arcuate
nucleus, AP neurons are therefore able to integrate
several metabolic and hormonal signals important in
the control of energy homeostasis.

(d) Central neural circuits stimulated by amylin

The AP is the predominant site of action of circulating
amylin in the brain. Amylin’s anorectic action is
completely abolished following lesions in the AP/NTS
region (Lutz et al. 1998, 2001b), and amylin dose-
dependently stimulates AP neurons in vitro, with a
threshold concentration in the range of circulating
plasma amylin concentrations (Riediger et al. 2001,
2002). Amylin also induces Fos expression in the AP
(Rowland et al. 1997; Rowland & Richmond 1999;
Riediger et al. 2001, 2004; Becskei et al. 2004), and
amylin antagonists that attenuate amylin’s anorectic
action also eliminate the Fos response in the AP
(Riediger et al. 2001, 2002, 2004). Finally, when rats
are refed after being deprived, there is an increase of
Fos in the AP/NTS that is subsequently attenuated in
the AP when an amylin antagonist is administered
(Riediger et al. 2004). The point is that the AP/NTS is
able to integrate diverse signals related to meals, and
amylin appears to render the region more sensitive to
other metabolic signals that reduce food intake.

There is no unique amylin receptor gene. Rather, the
functional amylin receptor in the AP (and elsewhere)
utilizes a calcitonin receptor (CTR) whose amylin-
specificity and affinity are bestowed via the co-expression
of one of several receptor activity modifying proteins
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(RAMPs) (McLatchie et al. 1998; Christopoulos et al.
1999; Foord & Marshall 1999; Muff et al. 1999; Sexton
et al. 2001; Fischer et al. 2002). The prototypical
amylin receptor results from the interaction of RAMP 1
or RAMP 3 with the CTR. RAMP1 and RAMP3
mRNA have been co-localized with amylin-induced
Fos mRNA in the rat AP (Ueda et al. 2001; Barth et al.
2004), and most amylin-sensitive AP neurons also
express the CTR (Becskei et al. 2004).

In addition to the AP/NTS, amylin elicits a strong Fos
response in the lateral parabrachial nucleus (lPBN), the
central nucleus of the amygdala (CeNA) and the bed
nucleus of the stria terminalis (Rowland et al. 1997;
Rowland & Richmond 1999; Riediger et al. 2004). All of
these Fos responses are markedly attenuated in AP-
lesioned rats (Rowland & Richmond 1999; Riediger et al.
2004), implying that the other sites are downstream of
direct amylin action in the AP. The NTS and the lPBN
are critical relay points for satiety and other signals to
reach forebrain areas (Berthoud 2002).

There is no conclusive evidence that peripheral amylin
has a direct effect on the hypothalamus. However,
fasting-induced Fos activation in lateral hypothalamic
neurons that is reversed by refeeding can also be reversed
by administering systemic amylin to rats without access
to food (Becskei et al. 2004). Further, peripheral amylin
or its agonist salmon calcitonin down-regulates the
expression of both orexin and melanin concentrating
hormone (MCH) in the lateral hypothalamus (LHA;
Barth et al. 2003). Since the LHA is devoid of amylin
binding sites (Beaumont et al. 1993; Sexton et al. 1994;
Christopoulos et al. 1995), the presumption is that the
LHA receives inhibitory input from amylin-activated
neurons in the brainstem. As discussed above, LHA
neurons expressing orexin and MCH are also inhibited
by signals coming from insulin and leptin, whether
directly or indirectly.

(e) Amylin as an adiposity signal

Besides having a strong satiating effect, amylin also
shares many characteristics with the adiposity signals
insulin and leptin, not the least of which is that its levels
are highly correlated with body fat (Cooper 1994;
Pieber et al. 1994; Wimalawansa 1997). When amylin
is infused chronically via osmotic minipumps placed
in the abdominal cavity, there is a sustained reduction
in food intake and body weight gain that is abolished in
rats with AP/NTS lesions (Arnelo et al. 1996b; Lutz
et al. 2001b). Consistent with this, and as discussed
above, mice lacking amylin gain weight more rapidly
than controls, especially when young (Gebre-Medhin
et al. 1997, 1998; Lutz 2005). Obese Zucker fa/fa rats
have dysfunctional leptin receptors. Besides being
hyperinsulinemic and hyperleptinemic, these rats are
also hyperamylinemic. Administering an amylin
antagonist to these rats results in increased food intake,
presumably by blocking endogenous amylin (Grabler &
Lutz 2004). Amylin may therefore function as an
important adiposity signal in these animals since their
brains are insensitive to insulin’s (Ikeda et al. 1986) as
well as leptin’s catabolic action. Consistent with this,
the ability of amylin to reduce meal size is normal in
rats on a high-fat diet that develop diet-induced obesity
(Eiden et al. 2002).
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(f ) Pathophysiology of amylin’s anorectic action

Few studies have considered amylin’s anorectic action
under pathophysiological conditions. Amylin has been
suggested to contribute to the anorexia occurring during
certain pancreatic neoplastic diseases that are charac-
terized by supraphysiological plasma amylin levels
(Stridsberg et al. 1995; Permert et al. 1997). Lack of
amylin may also contribute to the hyperphagia that
occurs in IDDM since these individuals also lack amylin.
Consistent with this, long-term treatment of late-stage
type-2 diabetics who are overweight and insulin resistant
with an amylin analogue in addition to insulin resulted in
far greater weight loss than occurred in diabetics
receiving insulin only. Thus, co-administration of insulin
plus amylin might help to circumvent the increase in
body weight that occurs in type-2 diabetics treated with
insulin, insulin secretagogues or insulin sensitizers
(Weyer et al. 2001; Hollander et al. 2004).

To summarize, blood-borne amylin reduces meal
size by stimulating neurons in the AP. Besides
enhancing the action of other satiety signals at the
level of the hindbrain, the amylin signal interacts with
other signals controlling energy homeostasis at the level
of the LHA and probably elsewhere. Finally, there is
evidence that amylin functions as an adiposity signal in
addition to a satiety signal.
7. GLUCAGON AND INGESTIVE BEHAVIOUR
As mentioned above, pancreatic glucagon’s metabolic
functions are in many respects opposite to those of
insulin. Glucagon’s most prominent physiological role
is to stimulate glucose production via hepatic glyco-
genenolysis or gluconeogensis, thereby helping main-
tain euglycemia during states of rapid glucose
utilization or fasts, respectively. Pancreatic glucagon is
also secreted as food is ingested, and this is thought to
provide a satiety signal leading to termination of the
meal (Geary 1990, 1998). In contrast to insulin and
amylin, neither basal, prandial, nor stimulated gluca-
gon secretion is related to body adiposity (Holst et al.
1983b; Raben et al. 1994), and repeated administration
of glucagon in amounts sufficient to reduce food intake
have few metabolic side effects (Geary 1990, 1998).
Therefore, unlike insulin and amylin, glucagon appears
not to be an adiposity signal.

(a) The glucagon family of peptides

The proglucagon gene is expressed in A-cells of the
endocrine pancreas and L-cells of the intestinal wall. It is
also expressed in the NTS in the hindbrain (Larsen et al.
1997; Lovshin & Drucker 2000). The control of
proglucagon expression and of proglucagon post-
translational processing differs among these tissues.
Brain and L-cell proglucagon-derived peptides include
glicentin (proglucagon 1-69), oxyntomodulin (proglu-
cagon 33-69), glucagon-like peptide-1 (GLP-1;
proglucagon 78-107 amide), and GLP-2 (proglucagon
126-158). Pancreatic A-cells synthesize only true
pancreatic glucagon (proglucagon 33-61). The hepato-
cyte glucagon receptor is highly selective for glucagon,
with little affinity for any other proglucagon-derived
peptides (Hjorth et al. 1994). Other proglucagon-derived
molecules that have been implicated in the control offood
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intake include GLP-1 (Tang-Christensen et al. 1996;
Thiele et al. 1998; Rinaman 1999; van Dijk & Thiele
1999; Kinzig et al. 2002; Schick et al. 2003), GLP-2
(Tang-Christensen et al. 2000) and oxyntomodulin
(Cohen et al. 2003; Baggio et al. 2004). Only glucagon
is considered here.

(b) Prandial glucagon secretion

Eating stimulates an immediate, brief increase in
glucagon secretion. It occurs within one minute of the
onset of spontaneous meals (de Jong et al. 1977) and
also increases during sham feeding (Nilsson &
Uvnas-Wallensten 1997). These observations, coupled
with the absence of prandial glucagon secretion in
patients with transplanted pancreata (Secchi et al.
1995), collectively imply that glucagon secretion can be
elicited by cephalic stimuli. Consistent with this,
stimulation of the ventromedial hypothalamus, the
dorsal vagal complex, or the gastric or hepatic branches
of the vagus nerve increase glucagon secretion (Marliss
et al. 1973; de Jong et al. 1977; Berthoud et al. 1990).
Although most meals, except pure carbohydrate meals,
stimulate glucagon secretion, high-protein meals are
most effective (Langhans et al. 1984).

The magnitude of the prandial increase in systemic
glucagon concentration during most meals is modest
(Muller et al. 1971; Holst et al. 1983a; Geary 1996)
because first-pass hepatic extraction is very efficient.
Portal vein glucagon concentration is considerably
higher (Ishida et al. 1983) and can be substantial
without any detectable change in systemic plasma
glucagon concentration (Dencker et al. 1975; Langhans
et al. 1984).For this reason, the primary targetofprandial
pancreatic glucagon secretion is likely the liver, and,
consistent with this, prandial glucagon secretion stimu-
lates hepatic glycogenolysis during meals (Langhans et al.
1982a, 1984). As described below, glucagon’s satiety
effect also originates in the liver.

(c) Glucagon decreases meal size

Subcutaneous, intramuscular, intraperitoneal, systemic
intravenous and intra-hepatic portal administration of
glucagon all reduce feeding (Geary 1990, 1998).
Hepatic-portal infusions are most reliable, eliciting
rapid, dose-dependent decreases in food intake at doses
ten times lower than vena caval infusions (Geary et al.
1993), thus providing compelling evidence that glucagon
acts in the liver to inhibit eating. Hepatic-portal infusions
of glucagon selectively decrease the size of the meal
without affecting the duration of the subsequent
intermeal interval (Le Sauter et al. 1991), and following
intraperitoneal glucagon injections, rats display normal
postprandial satiety behaviour (Geary & Smith 1982a),
indicating that glucagon contributes to satiation as
opposed to postprandial satiety. Intravenous infusion of
glucagon also decreases meal size in humans (Geary et al.
1992). The subjects reported feeling equally satiated as
during control meals and reported no side effects, and the
dose administered produced systemic plasma glucagon
concentrations that approximated the range produced by
normal meals (Geary 1998).

The signal to reduce meal size generated by
glucagon reaches the brain via sensory axons of the
vagus nerve since total subdiaphragmatic vagotomy,
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selective hepatic vagotomy, or lesion of the vagal
afferent terminal fields within the NTS all prevent
glucagon’s feeding-inhibitory effect (Geary & Smith
1983; MacIsaac & Geary 1985; Weatherford & Ritter
1986, 1988; Geary et al. 1993). The transduction
mechanism by which glucagon generates a vagal
afferent signal is unknown. Glucagon receptors have
not been identified on vagal sensory neurons, implying
an indirect mechanism. However, glucagon’s feeding-
inhibitory potency has been dissociated from its
glycogenolytic and hyperglycemic effects (Geary &
Smith 1982b; Geary et al. 1987) as well as from insulin-
mediated effects (De Castro et al. 1978; Geary et al.
1997). Glucagon does have vascular and smooth
muscle actions in the liver, and the majority of hepatic
vagal afferent fibers innervate the biliary tree and
hepatic vasculature (Sawchenko & Friedman 1979;
Berthoud et al. 1992); however, the glucagon fragment,
glucagon (1-21), which is a full agonist for the vascular
and smooth muscle effects, does not inhibit feeding
(Geary 1987). Glucagon also inhibits feeding in the
absence of any effect on gastric emptying (Stockinger &
Geary 1989).

Another possibility is that glucagon affects the
hepatocyte in a way that reduces its membrane
potential, leading to an electrotonic effect that is
transmitted to vagal afferents, as originally proposed
by Russek (1981). Glucagon could affect the hepato-
cyte membrane potential directly (Petersen 1974), as a
consequence of increasing intracellular fatty acid
oxidation (McGarry & Foster 1980), or as a conse-
quence of decreasing hepatocyte NaC/KC-ATPase
activity (Langhans & Scharrer 1987a,b; Rossi et al.
1995). Lutz et al. (2001a) recently established the
physiological relevance of glucagon’s effect on the
hepatic membrane potential by demonstrating that
glucagon antibodies depolarize the hepatocyte mem-
brane in vivo. As yet, however, this mechanism has not
been convincingly linked to glucagon satiety. Finally,
almost nothing is known about the central processing
of glucagon satiety, other than the necessity of the
hindbrain areas where the signal is received from the
vagus nerve (Weatherford & Ritter 1988).

(d) Reducing the glucagon signal increases

meal size

Langhans et al. (1982b) demonstrated that pre-meal
intraperitoneal administration of a highly specific
polyclonal glucagon antibody significantly increased
meal size and reduced hepatic glucose secretion,
presumably as a result of decreased hepatic glycogen-
olysis. Hepatic-portal but not vena caval infusions of
the same antibody also increased meal size (Le Sauter
et al. 1991; Geary et al. 1993). These findings imply
that endogenous glucagon, secreted during meals,
normally contributes to meal cessation by an action
in the liver.

(e) Interactions with other signals

The ability of glucagon to reduce meal size depends
upon functional interactions with other meal-related
signals because even massive doses of glucagon fail to
inhibit sham feeding in rats with open gastric cannulas,
in which food does not accumulate in the stomach or
Phil. Trans. R. Soc. B (2006)
enter the intestines in significant amounts (Geary &
Smith 1982b). CCK has been implicated as one such
signal, since at doses that are insufficient to reduce
sham feeding, CCK is able to reinstate glucagon’s
dose-dependent satiety effect (Le Sauter & Geary
1987). Oestradiol also interacts with glucagon since
both the feeding-inhibitory effect of glucagon and the
feeding-stimulatory effect of glucagon antibodies are
increased by estradiol treatment in ovariectomized rats
(Geary & Asarian 2001). Thus, glucagon contributes
to the marked sexual differentiation of the control of
eating in rats. Whether or not glucagon interacts with
the adiposity signals insulin and leptin has not been
investigated. Pretreatment with the amylin receptor
antagonist, calcitonin gene-related peptide-(8-37),
however, blocked the satiety effect of glucagon under
some, but not all, test conditions (Lutz et al. 1996).
Whether this potential interaction with glucagon
signalling relates to amylin’s function as a satiety signal,
an adiposity signal, or both, is unclear.

(f ) Pathophysiology of glucagon satiety

Changes in glucagon secretion and disruptions of food
intake have been associated in various diseases, but no
causal relationships have been established. For
example, glucagonoma produces extremely elevated
glucagon levels and severe anorexia (Wynick et al.
1993; Madsen et al. 1995). Whether this involves over-
stimulation of normal glucagon satiety or some non-
specific feeding-inhibitory effect is unknown (see Geary
1998, for a review). Postprandial glucagon levels are
increased in type-2 diabetes mellitus and may contrib-
ute to hyperglycemia in both type-1 and type-2 diabetes
mellitus (Dinneen et al. 1995), but these changes would
seem to predict increased satiety and consequently
reduced caloric intake, whereas as discussed above,
diabetes is associated with hyperphagia. On the other
hand, a missense mutation in the glucagon receptor
gene that reduces glucagon signalling has been found in
some patients with late-onset type-2 diabetes mellitus
(Hager et al. 1995), a phenomenon which potentially
could contribute to reduced satiety and overeating.
8. CONCLUSIONS
Hormones of the endocrine pancreas are collectively at
the crossroads of many aspects of energy homeostasis.
Glucagon, amylin and PP act in the short term to
reduce meal size, and insulin sensitizes the brain to
short-term meal-generated satiety signals; and insulin
and perhaps amylin and PP as well act over longer
intervals to modulate the amount of fat maintained and
defended by the brain. Hormones of the endocrine
pancreas interact with receptors at many points along
the gut–brain axis, from the liver to the sensory vagus
nerve to the hindbrain to the hypothalamus; and their
signals are conveyed both neurally and humorally.
Finally, their actions include gastrointestinal and
metabolic as well as behavioural effects. Thus, the
production and release of all of these hormones of the
endocrine pancreas (insulin, glucagon, amylin and PP)
are influenced by food intake and (at least in part) by
body fat (insulin and amylin), and they in turn control
caloric intake (insulin, glucagon, amylin, PP) and body
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weight (insulin, amylin and PP) through peripheral
(glucagon, PP and maybe insulin) as well as central
(amylin and insulin) mechanisms.
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